FURTHER INSIGHT INTO LOWER ORDER CUPRATE CHEMISTRY; ON THE USE OF CuBr.Me2S VS CuI EN ROUTE TO R2CuLi‡

Bruce H. Lipshutz*,¹ Scott Whitney, Joseph A. Kozlowski, and Curt M. Breneman Department of Chemistry, University of California Santa Barbara, CA 93106

Abstract: Both ¹H and ⁷Li NMR experiments show that 2MeLi + either CuBr Me₂S or CuI in THF afford the same species, MeyCuLi (+ L1X). However, use of the former source of Cu(I), depending upon its purity and especially handling, can lead to significantly decreased chemical yields. The reasons behind these observations and the implications for cuprate couplings are discussed.

Since the original report which presented CuBr.Me2S as an attractive alternative source of Cu(I) for the preparation of lower order (L.O.) lithium organocuprates, 2 R₂CuLi, <u>1</u>, it has become widely accepted that treatment of this salt with two equivalents of an organolithium leads to the same reagent formed via CuI.³ While by-product lithium salts (LiBr or LiI) which exist in solutions of <u>1</u> can occasionally play a pivotal role in determining a reaction's outcome,4 the actual reagent involved is assumed to be 1. Indeed, for over a decade one's choice of CuBr versus CuI as cuprate precursor has been and continues to be based usually on relative cost and convenience, and hence, both are routinely employed interchangeably. As a natural outgrowth of our recent study on CuI derived lower (and higher) order cuprates⁵ which, in essence, revealed considerable variations in composition as a function of reaction parameters (e.g., solvent(s), lithium salts, etc.), we decided to apply related chemical and spectroscopic techniques to L.O. systems prepared from CuBr·Me₂S. In this Letter we describe experimental observations which point to some fundamental differences between the use of CuI and CuBr·Me₂S for cuprate generation, and their implications for organocopper mediated couplings.

 $2 \text{ RLi} \qquad \begin{array}{c} CuI \\ 2 \text{ RLi} \\ \hline \\ CuBr (Me_{2}S) \\ \hline \\ CuBr (Me_{2}S) \\ \end{array} \qquad \begin{array}{c} R_{2}CuLi + LiBr (+Me_{2}S) \\ \hline \\ R_{2}CuLi + LiBr (+Me_{2}S) \\ \hline \\ \end{array}$

Dedicated to Professor Harry H. Wasserman on the occasion of his 65th birthday.

Our initial ⁷Li NMR spectrum of Me₂CuLi, prepared utilizing freshly titrated, low halide MeLi (in Et₂O) with CuBr·Me₂S, was rather startling. As with the cuprate derived from CuI + 2MeLi which has been freed of by-product LiI salts,⁵ two singlets were present corresponding to methyl groups on copper and to free MeLi. This result was completely reproducible using the same sources of CuBr·Me₂S and MeLi. The implication here was that the CuBr·Me₂S-derived reagent containing LiBr affords the same equilibrium mixture of Me₃Cu₂Li/(Me₂CuLi₂) + MeLi seen for CuI based Me₂CuLi <u>minus the LiI salts</u>. Although this phenomenon seemed difficult to believe, it should be noted that inspection of the literature suggests that all ¹H data on Me₂CuLi²,⁶ originates from treatment of <u>CuI</u> with MeLi. As best we can tell, no one has reported either the ¹H or ⁷Li NMR spectrum of 2MeLi + CuBr·Me₂S.

A closer look at the CuBr used, therefore, was in order. Firstly, it occurred to us that a critical feature associated with the use of CuBr·Me₂S may well be the manner in which it is handled. Unlike CuI,⁷ which is usually soxhlet extracted or recrystallized and then placed under vacuum or oftentimes stored in a heated, evacuated Abderhalden,⁸ CuBr·Me₂S is either used out of the bottle, or occasionally recrystallized.⁹ Repeating our earlier experiment with a freshly opened commercial bottle of CuBr·Me₂S led to a ⁷Li NMR spectrum containing but a single peak attributable to Me₂CuLi. A ¹H NMR experiment on this same cuprate using CuBr·Me₂S which had been dried azeotropically with toluene or <u>via</u> Abderhalden treatment at 56° overnight, revealed the presence of two species, Me₃Cu₂Li⁶ and Me₂CuLi (which are indistinguishable by ⁷Li NMR⁵) suggesting Cu(I):MeLi ratios > 1:2 (<u>vide infra</u>).

To corroborate these spectral observations, an array of chemical tests were performed on both 2-iodo and 2-bromooctane using Me₂CuLi prepared from CuBr (with and without Me₂S), the results from which were also compared with those obtained using CuI/2MeLi. Table I contains data which vividly attest to the significant impact which variations in quality and manipulation of CuBr can have on a reaction's outcome. Older bottles of (CuBr)₂ and CuBr·Me₂S which came "off the shelf" gave inferior yields of product. Recrystallizing these salts by known procedures prior to use increased yields considerably (compare column I: entries 1 vs 2, 6 vs 7). A relatively new bottle of CuBr·Me₂S gave similar results to those obtained from recrystallized CuBr (with or without Me₂S; see column I, entry 2; III, entries 1, 2). By contrast, however, prior drying under vacuum of "new" CuBr·Me₂S (Abderhalden, 56° , $\geq 8h$) caused yields to drop <u>ca</u>. 25-60% (column III, entries 2 <u>vs</u> 3, 4 <u>vs</u> 5, 7 <u>vs</u> 8). The same trend appears for n-Bu₂CuLi (Table I), suggesting the generality of these results.

The explanation behind these observations, especially in light of our earlier studies,⁵ is now readily apparent. The first scenario, where ⁷Li NMR demonstrated the existence of free MeLi and chemical yields were low for this source of CuBr·Me₂S (column II) is attributed to the poor quality of the CuBr·Me₂S. Less Cu(I) salt than anticipated implies less conversion of MeLi to Me₂CuLi, and hence free organolithium in solution, as seen by NMR, which increases products of reduction and elimination at the expense of substitution. With good quality CuBr·Me₂S, as originally described by House,² or (CuBr)₂,¹⁰ the desired Me₂CuLi is formed and clean spectroscopy and coupling occurs. Finally, handling of CuBr·Me₂S as done with CuI can be a costly mistake, as loss of any Me₂S increases the percentage of Cu(I) relative to MeLi. Ratios > 1:2 in THF give rise to incomplete generation of (Me₂CuLi)₂, and depending upon the amount of lost Me₂S, produce a quantity of the aggregate Me₃Cu₂Li, which is (relative to <u>Me₂CuLi</u>) chemically inert,⁵ as summarized in Scheme I.

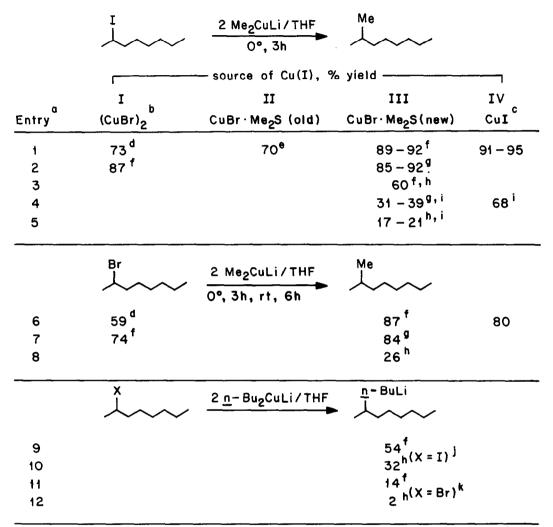


Table I. Reactions of R₂CuLi prepared from various sources of Cu(I) salts with 2° halides.

^a Yields are based on quantitative VPC analysis. ^b Purified according to Ref. 10. ^c Purified according to Ref. 7. ^d From aged (CuBr)₂ from Fisher. ^eFrom aged CuBr·Me₂S (Aldrich). ^f Recrystallized according to Ref. 9. ^g From Aldrich. ^hAfter drying in an Abderhalden at 56°C under vacuum overnight. ⁱReaction was run in Et₂O. ^j Reaction conditions: -78°, 1h. ^k0°, 3h.

<u>Scheme</u> 1

2 MeLi CuBr (with or without Me₂S) Me₂CuLi 1. X MeLi $\left[\text{aged} \Rightarrow \text{Cu}(\text{I}) \rightarrow \text{X} \text{Cu}(\text{II}) \right]$ gives side reactions 2 MeLi 2. CuBr (with or without Me₂S) Me₂CuLi [fresh or well-stored, only no additional handling 2 MeLi X Me₃Cu₂Li + (I-X)Me₂CuLi 3. CuBr · Me₂S $\left[dried \Rightarrow -X Me_2 S^{\uparrow} \right]$ [chemically inert]

In conclusion, the bottom line here is clear: if $(CuBr)_2$ or $CuBr \cdot Me_2S$ is to be used for the preparation of R₂CuLi (and hence, presumably other variations on Gilman reagents; i.e., mixed cuprates, heterocuprates, etc.), it is critical that salt of high quality be obtained, either <u>via</u> recrystallization or from commercial sources, and that no further handling be carried out. Improperly dried or partially oxidized material, wherein more or less than stoichiometric amounts of Cu(I) are present may lead to undesirable organometallic contaminants in solutions of R₂CuLi which affect reaction efficiency. With CuI, however, such issues are nonexistent.

<u>Acknowledgment</u>: Financial support provided by the NSF, the donors of the Petroleum Research Fund, and UCSB is gratefully acknowledged.

References and Notes

- A.P. Sloan Foundation Fellow, 1984-1988; Camille and Henry Dreyfus Foundation Teacher-Scholar, 1984-1989.
- 2. House, H.O., Chu, C-Y., Wilkins, J.M., Umen, M.J., J. Org. Chem., 1975, 40, 1460.
- 3. Posner, G.H., "An Introduction to Synthesis Using Organocopper Reagents," Wiley, N.Y., 1980, and references therein.
- House, H.O., Fischer, W.F., J. Org. Chem., 1968, <u>33</u>, 949; House, H.O., Wilkins, J.M., <u>ibid</u>., 1978, <u>43</u>, 2443; Bertz, S.H., Dabbagh, G., <u>ibid</u>., 1984, <u>49</u>, 1119; Whitesides, G.M., Fischer, W.F., San Filippo, J., Bashe, R.W., House, H.O., J. Am. Chem. Soc., 1969, <u>91</u>, 4871.
- 5. Lipshutz, B.H., Kozlowski, J.A., Breneman, C.M., J. Am. Chem. Soc., 1985, <u>107</u>, 3197.
- Ashby, E.C., Watkins, J.J., J. Am. Chem. Soc., 1977, <u>99</u>, 5312; <u>Chem. Comm.</u>, 1976, 784; Ashby, E.C., Lin, J.J., Watkins, J.J., J. Org. Chem., 1977, <u>42</u>, 1099.
- 7. Purified according to: Kauffman, G.B., Pinnell, Inorg. Syn., 1963, Z, 9.
- 8. Posner, G.H., Org. React., 1972, 19, 1; ibid., 1975, 22, 253.
- 9. Wuts, P.G.M., Syn. Comm., 1981, 11, 139;
- 10. Keller, R.N., Wycoff, H.D., Inorg. Syn., 1946, 2, 1.

(Received in USA 16 May 1986)